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Abstract This reading project contains very basic Lie groups, Lie algebras and
representation theory. I learned this stuff after the course MATH 5070 because I
want to figure out the theory of Lie algebras and Lie groups more clearly. This will
contains an introduction to matrix Lie groups, Lie algebras, the matrix exponential,
as well as some representation theory and the Baker–Campbell–Hausdorff formula.
The context is not hard and I try to explain my understanding toward this stuff in my
writing.

1 Introduction

Lie group is an important object in mathematics and physics. A Lie group is a group
of symmetries where the symmetries varies smoothly. More precisely, a Lie group
admits : a group structure, a topological manifold structure, and a smooth structure.
Moreover, these structures are compatible, which makes it into important objects as
well as tools in math.
In this notes, I will briefly introduce contents below:

1. Matrix Lie groups, Lie algebras, and their relations
2. Baker–Campbell–Hausdorff formula
3. Representation of 𝑠𝑙 (2,C)

1.1 Lie groups: definitions and examples

What is a Matrix Lie group?

Definition 1 (Matrix Lie group) A matrix Lie group is a closed subset in𝐺𝐿 (𝑛;C).
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Remark 1 Here we only require closedness in 𝐺𝐿 (𝑛;C), this means that a matrix
Lie group does’t need to be a closed subset of 𝑀 (𝑛;C).

Example 1 The special linear group 𝑆𝐿 (𝑛)
The special linear group (over R or C) is the group of 𝑛×𝑛 invertible matrices having
determinant one.

Example 2 One dimensional unitary group𝑈 (1)
For a complex variable z, consider the phase transformation 𝑧 → 𝑧

′= 𝑒𝑖 𝜃 𝑧, where
𝜃 is a real constant parameter. We can write this as 𝑈 (𝜃)𝑧 = 𝑒𝑖 𝜃 𝑧. Identifying the
Hermitian conjugate𝑈† (𝜃) = 𝑈−1 (𝜃) = 𝑈 (−𝜃), so that the operator𝑈 (𝜃) is unitary,
𝑈 (𝜃)𝑈† (𝜃) = 1 = 𝑈† (𝜃)U(𝜃), the set of phase transformations 𝑈 (1) = {𝑈 (𝜃), 0 ≤
𝜃 < 2𝜋} forms𝑈 (1), the one dimensional unitary group.

Example 3 unitary group𝑈 (𝑛)
Generalize the group of one dimensional phase transformations gives us 𝑈 (𝑛),
where the element 𝑎𝑖 𝑗 of a matrix A in 𝑈 (𝑛) are complex parameters such that
𝐴†𝐴 = 𝐴𝐴† = 𝐼𝑛.

Example 4 Special unitary group 𝑆𝑈 (𝑛)
We consider matrices in 𝑈 (𝑛) with determination 1, which is a closed subset of
𝑀 (𝑛;C), hence a matrix Lie group.

Another way of looking at𝑈 (𝑛) is through introducing the standard inner product
on Cn. Here we put the conjugate on the first factor when we talks about the inner
product: ⟨𝑥, 𝑦⟩ = ∑

𝑥 𝑗 𝑦 𝑗 . Say matrix A is unitary if it satisfies: ⟨𝑥, 𝑦⟩ = ⟨𝐴𝑥, 𝐴𝑦⟩,
which, in other words, is inner product preserving.

Consider now the bilinear form Cn defined by: (𝑥, 𝑦) =
∑
𝑥 𝑗 𝑦 𝑗 . Say matrix A

is the complex orthogonal group 𝑂 (𝑛;C) if it satisfies: (𝑥, 𝑦) = (𝐴𝑥, 𝐴𝑦). Those
matrices with determination 1 in 𝑂 (𝑛;C) are called the special orthogonal group
𝑆𝑂 (𝑛;C).

Further generalize it, now consider the bilinear form on Cn defined by: [𝑥, 𝑦]𝑛,𝑘 =

𝑥1𝑦1 + 𝑥2𝑦2 + · · · + 𝑥𝑛𝑦𝑛 − 𝑥𝑛+1𝑦𝑛+1 − 𝑥𝑛+2𝑦𝑛+2 − 𝑥𝑛+𝑘𝑦𝑛+𝑘 . Say a matrix A is the
generalized orthogonal group𝑂 (𝑛; 𝑘) if it satisfies: [𝑥, 𝑦]𝑛,𝑘 = [𝐴𝑥, 𝐴𝑦]𝑛,𝑘 . Those
matrices with determination 1 in 𝑂 (𝑛; 𝑘) are denoted as 𝑆𝑂 (𝑛; 𝑘).

Example 5 The Heisenberg Group
The set of all 3 × 3 real matrices A of the form below, is the Heisenberg group.

A= ©­«
1 𝑎 𝑏
0 1 𝑎
0 0 𝑐

ª®¬, where a, b, c are real numbers.

Definition 2 ((General) Lie group) A Lie group is a smooth manifold equipped with
a group structure such that the operations of group multiplication 𝑚 : 𝐺 × 𝐺 → 𝐺

by 𝑚(𝑔1, 𝑔2) = 𝑔1𝑔2 and inversion 𝑖 : 𝐺 → 𝐺 by 𝑖(𝑔) = 𝑔−1 are smooth.
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Why we require the smoothness of group multiplication/inversion here? We need
to ensure the compatibility of the manifold structure and the group structure of a Lie
group.

Matrix Lie groups are all Lie groups since every matrix Lie group G can be
viewed as a smooth embedded submanifold of 𝑀 (𝑛; C).

Definition 3 (Lie group morphisms) Let G and H be matrix Lie groups. A map Φ

from G to H is called a Lie group homomorphism, if

1. Φ is a group homomorphism
2. Φ is continuous.

1.2 Lie Algebras: definitions and examples

We now introduce the notion of a Lie algebra. After that, we associate to each matrix
Lie group a Lie algebra.

Definition 4 (Finite-dimensional Lie algebra)
A finite dimensional Lie algebra is a real/complex vector space 𝑔, together with

a map [,] from 𝑔 × 𝑔 into 𝑔, satisfying the following properties:

1. bilinearity: [𝑎𝑥 + 𝑏𝑦, 𝑐] = 𝑎[𝑥, 𝑐] + 𝑏[𝑦, 𝑐], [𝑥, 𝑏𝑦 + 𝑐𝑧] = 𝑏[𝑥, 𝑦] + 𝑐[𝑥, 𝑧].
2. skew symmetric: [𝑥, 𝑦] = −[𝑦, 𝑥].
3. the Jacobi Identity: [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0.

Say two elements 𝑥, 𝑦 in Lie algebra commute if [𝑥, 𝑦] = 0.The map [,] is referred
to as the bracket operation on 𝑔.

Remark 2 Due to our definition, a Lie algebra doesn’t need to be an algebra, in
contrast to what it suggests in its name. However, we can always define a Lie algebra
structure on an algebra.

Example 6 Lie algebra on an associative algebra
Let A be an associative algebra and 𝑔 is a subspace of A which is closed under the
bracket operation: [𝑋,𝑌 ] = 𝑋𝑌 −𝑌𝑋 , for any 𝑋,𝑌 in 𝑔. And 𝑔 forms a Lie algebra.
Note: In this example, to check the Jacobi Identity of the Lie algebra, the associativity
of 𝑔 is important.

Remark 3 The Jacobi identity seems to say, the bracket operation behaves as if it
were 𝑋𝑌 − 𝑌𝑋 in an associative algebra, even explicitly it may be defined in an
distinct way.

Example 7 𝑠𝑙 (𝑛; C) 𝑠𝑙 (𝑛; C) consists of matrices with trace 0. It is a Lie algebra
under the bracket: [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 .

Definition 5 (subalgebra of Lie algebra) A subalgebra ℎ of Lie algebra 𝑔 is a
subspace, which is closed under brackets. It is said to be an ideal if [𝑋, 𝐻] ∈ ℎ, for
all 𝑋 ∈ 𝑔 and 𝐻 ∈ ℎ.



4 FAN,Yuxin 1155205162

Definition 6 (Lie algebra morphisms) Let 𝑔, ℎ be two Lie algebras. A linear map
𝜙 : 𝑔 → ℎ is called a Lie algebra homomorphism if it preserves the bracket operation.
That is, 𝜙[𝑋,𝑌 ] = [𝜙(𝑋), 𝜙(𝑌 )] for all 𝑋,𝑌 in 𝑔.

Definition 7 (Adjoint map) 𝑔 is a Lie algebra and X is an element of 𝑔, we can
define a linear map from 𝑔 to itself using the bracket operation. That is,
𝑎𝑑𝑥 (𝑌 ) = [𝑋,𝑌 ] .

Using this useful concept, we rewrite our Jacobi identity as 𝑎𝑑𝑥 ( [𝑌, 𝑍]) =

[𝑎𝑑𝑥 (𝑌 ), 𝑍] + [𝑌, 𝑎𝑑𝑥 (𝑍)], which displays the derivation property of this adjoint
map.

Proposition 1 ad is a Lie algebra homomorphism from 𝑔 to End(𝑔). In other words,
𝑎𝑑[𝑋,𝑌 ] = [𝑎𝑑𝑋, 𝑎𝑑𝑌 ].

1.3 From Lie groups to Lie algebras

We now have Lie groups, Lie algebras, Lie groups homomorphisms, Lie algebra
homomorphisms, etc.. But what’s the relation among them? We next assign each Lie
group with a Lie algebra. To do that, we firstly review some matrix theory.

1.3.1 The Matrix Exponential

If X is an 𝑛×𝑛matrix, we define the exponential of X, denoted as 𝑒𝑋 or 𝑒𝑥𝑝𝑋 , using
the Taylor series:

𝑒𝑋 =

𝑛∑︁
𝑖=1

𝑋𝑚

𝑚!
(1)

It can be shown that the series (1) converges for every matrices in 𝑀 (𝑛; C).
Furthermore, 𝑒𝑋 is a continuous function with respect to X.

We list some properties/theorems of the matrix exponential.

Proposition 2 1. 𝑒𝑋 is invertible and its inverse is 𝑒 (−𝑋) .
2. 𝑒 (𝛼+𝛽)𝑋 = 𝑒 (𝛼𝑋)𝑒 (𝛽𝑋) .
3. If XY = YX, then 𝑒𝑋+𝑌 = 𝑒𝑋𝑒𝑌 = 𝑒𝑌 𝑒𝑋.
4. If 𝐶 ∈ 𝐺𝐿 (𝑛; C), then 𝑒𝐶𝑋𝐶−1

= 𝐶𝑒𝑋𝐶−1.
5. 𝑑𝑒𝑡 (𝑒𝑥) = 𝑒𝑡𝑟𝑎𝑐𝑒 (𝑋) .

Theorem 1 Let X be a 𝑛×𝑛 complex matrix. Then 𝑒𝑡𝑋 is a smooth curve in 𝑀 (𝑛; C)
and 𝑑𝑦

𝑑𝑡
𝑒𝑡𝑋 = 𝑋𝑒𝑡𝑋 = 𝑒𝑡𝑋𝑋 . We observe that 𝑑𝑦

𝑑𝑡
|𝑡=0 = 𝑋 .
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Theorem 2 The exponential map is an infinitely differentiable map of 𝑀 (𝑛; C) into
𝑀 (𝑛; C).

Definition 8 (One-parameter subgroup) A function A :R → 𝐺𝐿 (𝑛; C) is called a
one-parameter subgroup of 𝐺𝐿 (𝑛; C) if :

1. A is continuous.
2. 𝐴(0) = 𝐼.
3. 𝐴(𝑡 + 𝑠) = 𝐴(𝑡)𝐴(𝑠).

Theorem 3 If 𝐴(·) is a one-parameter subgroup of 𝐺𝐿 (𝑛; C), then there exists a
unique 𝑛 × 𝑛 complex matrix X such that: 𝐴(𝑡) = 𝑒𝑡𝑋 .

1.3.2 The Lie algebra of a Lie group

Given a matrix Lie group G, we define the corresponding Lie algebra 𝑔 as: 𝑔 =
{𝑋 : 𝑒𝑡𝑋 ∈ 𝐺, for any 𝑡 ∈ 𝑅} .

We now establish useful properties of the Lie algebra induced by a Lie group.
Having such a defined “Lie algebra” induced from a Lie group in hand, we ask

ourselves, which operation is allowed?

Proposition 3 Let G be a matrix Lie group with Lie algebra 𝑔, 𝑋,𝑌 ∈ 𝑔 then we
have:

1. 𝐴𝑋𝐴−1 ∈ 𝑔, for all ∈ 𝑔.
2. 𝑠𝑋 ∈ 𝑔 for all real numbers s.
3. 𝑋 + 𝑌 ∈ 𝑔.
4. 𝑋𝑌 − 𝑌𝑋 ∈ 𝑔.

Thus, by introducing the common bracket [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 , we get the Lie
algebra of a matrix Lie group as a real Lie algebra.

Example 8 The Lie algebra of 𝐺𝐿 (𝑛; C)
𝑔𝑙 (𝑛,C) (which refers to the corresponding matrix of 𝐺𝐿 (𝑛; C)), is the space of all
𝑛 × 𝑛 matrices with complex entries.

Example 9 The Lie algebra of 𝑆𝐿 (𝑛; C)
𝑠𝑙 (𝑛,C) (which refers to the corresponding matrix of 𝑆𝐿 (𝑛; C)), is the space of all
𝑛 × 𝑛 matrices with complex entries with trace 0.

Example 10 The Lie algebra of𝑈 (𝑛; C)
𝑢(𝑛,C) (which refers to the corresponding matrix of 𝑈 (𝑛; C)), is the space of all
𝑛 × 𝑛 matrices with complex entries satisfying 𝐴★ = −𝐴, where 𝐴★ is the conjugate
of the matrix.

Example 11 The Lie algebra of 𝑆𝑈 (𝑛; C)
𝑠𝑢(𝑛,C) (which refers to the corresponding matrix of 𝑆𝑈 (𝑛; C)), is the space of all
𝑛 × 𝑛 matrices with complex entries satisfying 𝐴★ = −𝐴 with trace 0 (𝐴★ is the
conjugate of the matrix) .
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2 Relations: Lie algebras and Lie groups

For this reading notes, we try to use Lie algebras to study the structure of a Lie group.
In this section, we try to find out some similarities and correspondence between Lie
algebras and Lie groups, such as the correspondence of morphisms and substructures.

2.1 Relations between commutativity

Theorem 4 If G is commutative then 𝑔 is also commutative.

Proof For any two matrices 𝑋;𝑌 ∈ 𝑀 (𝑛,C), the commutator of X and Y can be
computed through:

[𝑋,𝑌 ] = 𝑑

𝑑𝑡
( 𝑑
𝑑𝑠
𝑒𝑡𝑋𝑒𝑠𝑌 𝑒−𝑡𝑋 |𝑠=0) |𝑡=0 (2)

If G is commutative and X and Y ∈ 𝐺, we know that 𝑒𝑡𝑋 commutes with 𝑒𝑠𝑌 ,m
which means the right hand side is independent of 𝑡, thus [𝑋,𝑌 ] = 0. □

2.2 Relations between morphisms

The following theorem tells us that a Lie group homomorphism between two Lie
groups gives rise to a map between the corresponding Lie algebras.

Theorem 5 Let G and H be matrix Lie groups, with Lie algebras 𝑔, ℎ. When we
have a Lie group homomorphism Φ : 𝐺 → 𝐻, there is a unique real-linear map
𝜙 : 𝑔 → ℎ such that:

Φ(𝑒𝑋) = 𝑒𝜙 (𝑋) (3)

for all 𝑋 ∈ 𝑔. The map 𝜙 has following additional properties:

1. 𝜙(𝐴𝑋𝐴−1) = Φ(𝐴)𝜙(𝑋)Φ(𝐴)−1, for all X ∈ 𝑔, 𝐴 ∈ 𝐺.
2. 𝜙( [𝑋,𝑌 ]) = (𝜙[𝑋], 𝜙[𝑌 ]) for all 𝑋,𝑌 ∈ 𝑔.
3. 𝜙(𝑋) = 𝑑

𝑑𝑡
Φ(𝑒𝑡𝑋) |𝑡=0.

Proof Since Φ : 𝐺 → 𝐻 is a Lie group homomorphism, then for each X∈ 𝑔, Φ(𝑒𝑡𝑋)
will be a a one-parameter subgroup of H. Thus there will be an unique matrix Z such
that:

Φ(𝑒𝑡𝑋) = 𝑒𝑡𝑍 (4)

for all t ∈ R. We define 𝜙(𝑋) = 𝑍, and check 𝜙 satisfies required properties. Taking
t=1, we see that Φ(𝑒𝑋) = 𝑒𝜙 (𝑋) for all X in 𝑔. Moreover, since Φ(𝑒𝑡𝑋) = 𝑒𝑡𝑍 for all
t, then Φ(𝑒𝑡𝑠𝑋) = 𝑒𝑡𝑠𝑍 , showing that 𝜙(𝑠𝑋) = 𝑠𝜙(𝑋). Using the formula:

𝑒𝑋+𝑌 = lim
𝑛→∞

(𝑒 𝑋
𝑚 𝑒

𝑌
𝑚 )𝑚 (5)
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as well as the continuity of Φ, we get:

𝑒𝑡 𝜙 (𝑋+𝑌 ) = Φ( lim
𝑚→∞

(𝑒 𝑡𝑋
𝑚 𝑒

𝑡𝑌
𝑚 )𝑚) = lim

𝑚→∞
(Φ(𝑒 𝑡𝑋

𝑚 )Φ(𝑒 𝑡𝑌
𝑚 ))𝑚 (6)

Thus,
𝑒𝑡 𝜙 (𝑋+𝑌 ) = lim

𝑚→∞
((𝑒

𝑡 𝜙 (𝑋)
𝑚 𝑒

𝑡 𝜙 (𝑌 )
𝑚 ))𝑚 = 𝑒𝑡 (𝜙 (𝑋)+𝜙 (𝑌 ) ) (7)

Differentiating this result at 𝑡 = 0, we get 𝜙(𝑋 + 𝑌 ) = 𝜙(𝑋) + 𝜙(𝑌 ).

Thus, We have thus obtained a real-linear map 𝜙 satisfying Φ(𝑒𝑋) = 𝑒𝜙 (𝑋) . If
this also hold true for another linear map 𝜙′ with this property, we would have:

𝑒𝑡 𝜙 (𝑋) = 𝑒𝑡 𝜙 (𝑋) ′ = Φ(𝑒𝑡𝑋) (8)

for all 𝑡 ∈ R, by differentiating this result at 𝑡 = 0, we get 𝜙(𝑋) = 𝜙′ (𝑋).

We now verify the remaining claimed properties of 𝜙. For any 𝐴 ∈ 𝐺, we have

𝑒𝑡 𝜙 (𝐴𝑋𝐴−1 ) = 𝑒𝜙 (𝑡 𝐴𝑋𝐴−1 ) = Φ(𝑒𝑡 𝐴𝑋𝐴−1 ) (9)

Thus,
𝑒𝑡 𝜙 (𝐴𝑋𝐴−1 ) = Φ(𝐴)Φ(𝑒𝑡𝑋)Φ(𝐴)−1 = Φ(𝐴)𝑒𝑡 𝜙 (𝑋)Φ(𝐴)−1. (10)

Differentiating this identity at t=0 gives property 1. What’s more, for all 𝑋,𝑌 ∈ 𝑔,
we have

𝜙( [𝑋,𝑌 ]) = 𝜙( 𝑑
𝑑𝑥
𝑒𝑡𝑋𝑌𝑒−𝑡𝑋 |𝑡=0) =

𝑑

𝑑𝑡
𝜙(𝑒𝑡𝑋𝑌𝑒−𝑡𝑋) |𝑡=0, (11)

using the fact that a derivative commutes with linear transformation. Thus,

𝜙( [𝑋,𝑌 ]) = 𝑑

𝑑𝑡
Φ(𝑒𝑡𝑋)𝜙(𝑌 )𝜙(𝑒−𝑡𝑋) |𝑡=0

=
𝑑

𝑑𝑡
𝑒𝑡 𝜙 (𝑋)𝜙(𝑌 )𝑒−𝑡 𝜙 (𝑋) |𝑡=0 = (𝜙[𝑋], 𝜙[𝑌 ])

(12)

which gives 2. Thirdly, since Φ(𝑒𝑡𝑋) = 𝑒𝜙 (𝑡𝑋) = 𝑒𝑡 𝜙 (𝑋) , we can compute 𝜙(𝑋) as
in point 3. □

Remark 4 From here, we konw that every Lie group homomorphism gives rise to
a Lie algebra homomorphism. Will the reverse version be true? We will solve this
question in the next section.

2.3 Relations between substructures

Given a subgroup in a Lie group, could we obtain a subalgebra in the corresponding
Lie algebra?
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Theorem 6 Let G and H be matrix Lie groups with 𝐻 ⊂ 𝐺, the Lie algebra ℎ of H
is a subalgebra of the Lie algebra 𝑔 of G. Furthormore,

1. H is a normal subgroup of G, then ℎ is an ideal in 𝑔.
2. If G and H are connected and ℎ is an ideal in 𝑔, then H is a normal subgroup in

G.

3 Converse Version: From Lie algebras to Lie groups

We can construct objects/find morphisms of a Lie group using Lie algebra. Just as
we know,

1. Every matrix Lie group has its own finite dimensional Lie algebra.
2. Let G and H be matrix Lie groups, with Lie algebras 𝑔, ℎ. When we have a Lie

group homomorphism Φ : 𝐺 → 𝐻, there is a unique real-linear map 𝜙 : 𝑔 → ℎ

such that:
Φ(𝑒𝑋) = 𝑒𝜙 (𝑋) (13)

for all 𝑋 ∈ 𝑔 with several properties.
3. A subgroup H of a matrix Lie group G corresponds to a subalgebra ℎ of the Lie

algebra 𝑔.

However, it’s often not enough to consider just one direction. So we ask ourselves:
under which assumptions can I produce the reversed direction? We will give a quick
answer, whose proof relies on the Baker–Campbell–Hausdorff formula.

1. True.
2. True, given that G is simply connected.
3. True, if H is a connected Lie group.

We skip details and simply list the BCH formula/several statements below.

3.1 The Baker–Campbell–Hausdorff Formula

This proof of the converse version will relies on the Baker–Campbell–Hausdorff
formula, stated as follows:

Theorem 7 For all 𝑛 × 𝑛 complex matrices X with the norm of X, Y sufficiently
small, we have:

𝑙𝑜𝑔(𝑒𝑋𝑒𝑌 ) = 𝑋 +
∫ 1

0
𝑔(𝑒𝑎𝑑𝑋 ) (𝑒𝑡𝑎𝑑𝑌 ) (𝑌 )𝑑𝑡 (14)
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Remark 5 Not only do we focus on the Baker–Campbell–Hausdorff (BCH) itself,
but we notice that this conveys the message: 𝑙𝑜𝑔(𝑒𝑋𝑒𝑌 ) can be represented in terms
of communtators involving only X and 𝑌 . Besides, the formula implies that all
information about the product operation on a matrix Lie group, at least near the
identity, is encoded in the Lie algebra.

Using BCH formula (mainly by the constructions local homomorphism from 𝜙),
we can prove the following:

Theorem 8 (Answer to reversed Q2) Let G and H be matrix Lie groups with Lie
algebras 𝑔 and ℎ respectively, and let 𝜙 : 𝑔 → ℎ be a a Lie algebra homomorphism. If
G is simply conncected, there exists a unique Lie group homomorphism Φ : 𝐺 → 𝐻

, such that
Φ(𝑒𝑋) = 𝑒𝜙 (𝑋) (15)

for all 𝑋 ∈ 𝑔.

Theorem 9 (Answer to reversed Q3) Let H be a connected Lie subgroup of
𝐺𝐿 (𝑛; C) with Lie algebra ℎ. Then H can be given the structure of a smooth manifold
in such a way that the group operations on H are smooth and the inclusion map of
H into 𝐺𝐿 (𝑛; C) is smooth.

Thus, every connected matrix Lie subgroup can be made into a Lie group.

3.2 Lie’s Third Theorem

Theorem 10 (Answer to reversed Q1) If 𝑔 is any finite-dimensional, real Lie al-
gebra, there exists a connected Lie subgroup G of 𝐺𝐿 (𝑛; C) whose Lie algebra is
isomorphic to 𝑔.

Theorem 11 Every finite-dimensional, real Lie algebra is isomorphic to the Lie
algebra of some matrix Lie group.

4 Representations of 𝒔𝒍 (2; C)

4.1 Some Representation theory

Measuring an algebraic structure is difficult. We sometimes complete this by letting
the algebraic structure acts on a vector space, and character algebraic structures by
the actions they behave on other vector spaces. We next consider the representations
of Lie groups and Lie algebras simultaneously. Firstly let me give the definition.
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Definition 9 Let G be a matrix Lie group. A finite-dimensional complex/real rep-
resentation of G is a Lie group homomorphism : Π : 𝐺 → 𝐺𝐿 (𝑉), here V is a
finite-dimensional complex/real vector space.
Let 𝑔 be a complex/real Lie algebra, a finite-dimensional complex representation of
𝑔 is a Lie algebra homomorphism 𝜋 : 𝑔 → 𝑔𝑙 (𝑉), here V is a finite-dimensional
complex/real vector space.

Theorem 12 Let G be a matrix Lie group with Lie algebra 𝑔 and let Π be a finite-
dimensional representation of G acting on V, Then there is a unique representation
𝜋 of g acting on the same space such that :

Π(𝑒𝑋) = 𝑒𝜋 (𝑋) (16)

for all X ∈ 𝑔. The representation 𝜋 can be computed as 𝜋(𝑋) = 𝑑
𝑑𝑡
Π(𝑒𝑡𝑋) |𝑡=0.

Combining the representations of Lie groups and Lie algebras, we ask ourselves,
whether every representation 𝜋 of g comes from a representation Π of G. (This is
true if G is simply connected).

Some representations can be divided into simpler representations, and under some
representations different elements will induce different elements in 𝐺𝐿 (𝑉) (Linear
Transformation over V). We list several kinds of representations below:

1. If this homomorphism is injective, then call the representation a faithful repre-
sentation.

2. A representation with no nontrivial invariant subspaces is called irreducible.

We can see some examples of representations of Lie groups.

1. The easiest one : trivial representation Π : 𝐺 → 𝐺𝐿 (1; C), by sending every
element g ∈ G to the identity element of 𝐺𝐿 (1; C).

2. The adjoint representation: 𝐴𝑑 : 𝐺 → 𝐺𝐿 (𝑔) given by 𝐴 ↦→ 𝐴𝑑𝐴.

We can also write the corresponding version for Lie algebras.

1. trivial representation 𝜋 : 𝑔 → 𝑔𝑙 (1; C), by 𝜋(𝑋) = 0, for all 𝑋 ∈ 𝑔.
2. The adjoint representation: 𝑎𝑑 : 𝑔 → 𝑔𝑙 (𝑔) given by 𝑋 ↦→ 𝑎𝑑𝑋.

Given a representation, when we want to restrict it, we introduce the invariant
subspace. When we want to extend it, we consider the direct sum of representations.
We omit the definitions here.

We can further see the relations between Lie groups and Lie algebras as follows:

Theorem 13 Let G be a connected matrix Lie group with Lie algebra 𝑔. Let Π be a
representation of G and 𝜋 be the associated representation of 𝑔. Π is irreducible if
and only if 𝜋 is irreducible.

Theorem 14 Let G be a connected matrix Lie group with Lie algebra 𝑔. Let Π1,Π2
be representations of G and 𝜋1, 𝜋2 be the associated representations of 𝑔. Then
Π1,Π2 are isomorphic if and only if 𝜋1, 𝜋2 are isomorphic.
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4.2 Schur’s lemma

Having a Lie group G, we can use it to act on different vector spaces V, W. And
denote the representations as Π, Σ. Say a linear map 𝜙 : 𝑉 → 𝑊 an intertwining
map of representations if:

𝜙(Π(𝐴)𝑣) = Σ(𝐴)𝜙(𝑉) (17)

The analogous property defines intertwining maps of representations of a Lie algebra.
Additionally, if 𝜙 is invertible, then 𝜙 is said to be an isomorphism of representations.
We now introduce Schur’s lemma, which reveals orthogonality relations.

Theorem 15 (Schur’s lemma) Let V, W be irreducible representations of G.

1. If f : V → W is a G-morphism, then either f 0, or f is invertible.
2. If 𝑓1, 𝑓2 : 𝑉 → 𝑊 are two G-morphisms and 𝑓2 ≠ 0, then there exists 𝜆 ∈ C such

that 𝑓1 = 𝜆 𝑓2.

Proof (1) Suppose 𝑓 is not identically zero. Since 𝑘𝑒𝑟 ( 𝑓 ) is a G-invariant subset in
V, it must be 0. So 𝑓 is injective. In particular, 𝑓 (𝑉) is a nonzero subspace of W. On
the other hand, we can check that 𝑓 (𝑉) is a G-invariant subspace of 𝑊 . It follows
that 𝑓 (𝑉) = 𝑊 , and thus 𝑓 is invertible.
(2) Since 𝑓2 ≠ 0, it is invertible. is a G-morpism from V to V itself. Let 𝜆 be one
of the eigenvalues of the linear map 𝑓 . Then 𝑓 − 𝜆𝐼 is a G-morphism from V to V
which is not invertible. Thus, 𝑓 − 𝜆𝐼 =0, 𝑓1 = 𝜆 𝑓2. □

4.3 A specific example: 𝒔𝒍 (2; C)

In this subsection, we will show (up to isomorphism) all of the finite-dimensional
irreducible complex representations of the Lie algebra 𝑠𝑙 (2; C). Firstly recall that
𝑠𝑙 (2; C) consists of matrices with trace 0. We use the following basis for 𝑠𝑙 (2; C):

𝑋 =

(
0 1
0 0

)
, 𝑌 =

(
0 0
1 0

)
, 𝐻 =

(
1 0
0 −1

)
, (18)

We just mention the theorem, but the details in the proof is worthwhile to learn.

Theorem 16 If (𝜋,𝑉) is a finite-dimensional representation of 𝑠𝑙 (2; C), the following
results hold.

1. Every eigenvalue of 𝜋(𝐻) is an integer. Furthermore, if v is an eigenvector for
𝜋(𝐻) with eigenvalue 𝜆 and 𝜋(𝑋)𝑣 = 0, then 𝜆 is a non-negative integer.

2. The operators 𝜋(𝑋) and 𝜋(𝑌 ) are nilpotent.
3. If we define 𝑆 : 𝑉 → 𝑉 by

𝑆 = 𝑒𝜋 (𝑋)𝑒−𝜋 (𝑌 )𝑒𝜋 (𝑋) , (19)
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then S satisfies 𝑆𝜋(𝐻)𝑆−1 = −𝜋(𝐻).
4. If an integer k is an eigenvalue for 𝜋(𝐻), so is each of the numbers −|𝐾 |,−|𝐾 | +

2, · · · , |𝐾 | − 2, |𝐾 |.
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